Advanced Statistical Methods: Beyond Linear Regression

John R. Stevens
Utah State University

Notes 3. Statistical Methods II

Mathematics Educators Workshop
28 March 2009

http://www.stat.usu.edu/~jrstevens/pcmi
ALL Data

- “Preprocessed” gene expression data
 - 12625 genes (hgu95av2 Affymetrix GeneChip)
 - 128 samples (arrays)
 - a matrix of “expression values” – 128 cols, 12625 rows

- Phenotypic data on all 128 patients, including:
 - 95 B-cell cancer
 - 33 T-cell cancer

- Motivating question: Which genes are changing expression values systematically between B-cell and T-cell groups?

- Needle(s) in a haystack …
Basic idea of differential expression (DE)

- “Observe” gene expression in different conditions – healthy vs. diseased, e.g.
- Decide which genes’ expression levels are changing significantly between conditions
- Target those genes – to halt disease, e.g.
- Note: there are far too many ways to test for DE to present here – we will just look at major themes of most of them, and focus on implementing one
Miscellaneous statistical issues

- Test each gene individually
 - Dependence structure among genes not well-understood: (co-regulation or co-expression)
 - Ignore coregulation – first, one at a time

- Scale of data
 - Magnitude of change depends on scale
 - In general: log scale is “approximately right”
 - Variance stabilization transformation can help
Simple / Naïve test of DE

- Observe gene expression levels under two conditions

\[Y_{ijk} = \text{log-scale expr. level of gene k in replicate j of "treatment" i} \]

- Calculate: average log “fold change”

\[\overline{Y}_{i.k} = \text{ave. log expr. for gene k in treatment i} \]

\[LFC_k = \overline{Y}_{2.k} - \overline{Y}_{1.k} = \text{ave. log fold change for gene k} \]

- Make a cut-off: R

Gene k is "significant" if \(|LFC_k| > R \)
What does naïve test do?

- Estimate degree of differential expression:
 - LFC > 0 for “up-regulated” genes
 - LFC < 0 for “down-regulated” genes

- Identifies genes with largest observed change

- A simple mean comparison ignores something…
 - cannot really test for “significance”
 - what if larger LFC have large variability?
 - then not necessarily significant
How to take variability into account?

- Build some test statistic on a per-gene basis

- How do we “usually” test for mean differences between two groups or samples?

- Test statistic:

\[
t_k = \frac{\bar{Y}_{2,k} - \bar{Y}_{1,k}}{S_k} = \frac{LFC_k}{S_k}
\]

pooled SD
How to use this to “test” for DE?

- What is being tested?

 Null: No change for gene k

- Under null, $t_k \sim t$ dist. with n_k d.f.

 “parametric” assumption ...

- But what is needed to do this?

 - “Large” sample size
 - Estimate $\sigma_k = “pop. SD”$ for gene k
 (example: s_k)
What if we don’t have enough?

- Probably don’t – even dozens of arrays may not suffice

- Two main problems:
 1. Estimate σ_k (especially for small sample size)
 2. Appropriate sampling distribution of test stat.

- Basic solutions:
 1. To estimate σ_k: Pool information across genes
 2. For comparison against ‘sampling distribution’:
 - use parametric assumption on “improved” test stat.
 - use non-parametric methods – resampling / permuting
Test for DE with limma / eBayes

- For gene k under treatment j on array i:

\[Y_{ijk} = \beta_{k,0} + \beta_{k,1}T_{jk} + \varepsilon_{ijk}, \quad \text{Var}[\varepsilon_{ijk}] = \sigma_k^2 \]

(expression level (log scale) + treatment effect (DE) + treatment level (here, 0 or 1))

- What if there are more covariates than just treatment? – use matrix notation for convenience:

\[E[Y_k] = X\beta_k \]

(log-scale expression vector + design matrix (n x p))
Assumptions in linear model

Obtain estimates $\hat{\beta}_k$ and $\hat{\sigma}_k$, and $\text{Var} \left[\hat{\beta}_k \right] = V_k \hat{\sigma}_k^2$

For covariate w,

$$\hat{\beta}_{k,w} \mid \beta_{k,w}, \sigma_k^2 \sim N \left(\beta_{k,w}, V_{k,w,w} \hat{\sigma}_k^2 \right)$$

$$\hat{\sigma}_k^2 \mid \sigma_k^2 \sim \frac{\sigma_k^2}{d_k} \chi^2_{d_k}, \ d_k = \text{resid. d.f.} = n - p$$

Then $t_{k,w} = \frac{\hat{\beta}_{k,w}}{\hat{\sigma}_k \sqrt{V_{k,w,w}}} \sim t_{d_k}$

This is something we’ve already done …

Can we “improve” it?
Hierarchical model to borrow information across genes: eBayes

Assume prior distribution \(\frac{1}{\sigma_k^2} \sim \frac{1}{d_0s_0^2} X^2_{d_0} \)

\((s_0^2 \text{ and } d_0 \text{ estimated from data using empirical Bayes methods})\)

(\text{using all of the genes})

Consider the posterior mean \(\tilde{\sigma}_k^2 = E\left[\sigma_k^2 \mid \hat{\sigma}_k^2\right] = \frac{d_0s_0^2 + d_k\hat{\sigma}_k^2}{d_0 + d_k} \)

Then the "moderated" t-statistic \(\tilde{t}_{k,w} = \frac{\hat{\beta}_{k,w}}{\tilde{\sigma}_k \sqrt{V_{k,w,w}}} \sim t_{d_0 + d_k} \)

represents: added information (from using all genes)
Now – how many genes will be called significant?
Significance and P-values

- Usually, “small” P-value → claim significance
- Correct interpretation of P-value from a test of significance:
 “The probability of obtaining a difference at least as extreme as what was observed, just by chance when the null hypothesis is true.”

- Consider a t-test of $H_0: \mu_1 - \mu_2 = 0$, when in reality, $\mu_1 - \mu_2 = c$ (and SD=1 for both pop.)
- What P-values are possible, and how likely are they?
For each value of c, 1000 data sets (think of as 1000 genes) were simulated where two populations are compared, and the "truth" is $\mu_1 - \mu_2 = c$. For each data set, the t-test evaluates $H_0: \mu_1 - \mu_2 = 0$ (think of as no change in expression level). The resulting P-values for all data sets are summarized in the histograms.

What's going on here?
Histograms smoothed and overlayed

Note:

- Even when there is no difference (c=0), very small P-values are possible.

- Even for larger differences (c=0.2), very large P-values are possible.

- When we look at a histogram of P-values from our test of DE, we have a mixture of these distributions (because each gene has its own true value for c).
So this is a mixture of distributions.

A flat histogram would suggest that there really aren’t any DE genes.

The peak near 0 indicates that some genes are DE.

But which ones?
How to treat these P-values?

- Traditionally, consider some cut-off

 Reject null if P-value < α, for example (often $\alpha = 0.05$)

- What does this mean?

 α is the acceptable level of Type I error:
 $\alpha = P(\text{reject null} \mid \text{null is true})$
Multiple testing

- We do this with many (thousands, often) genes simultaneously – say m genes

<table>
<thead>
<tr>
<th></th>
<th>Fail to Reject Null</th>
<th>Reject Null</th>
<th>Total Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null True</td>
<td>U</td>
<td>V</td>
<td>m_0</td>
</tr>
<tr>
<td>Null False</td>
<td>T</td>
<td>S</td>
<td>$m-m_0$</td>
</tr>
</tbody>
</table>

- # of Type I errors: V
- # of Type II errors: T
- # of correct “decisions”: $U+S$
Error rates

- Think of this as a family of m tests or comparisons
- Per-comparison error rate: $\text{PCER} = E[V/m]$
- Family-wise error rate: $\text{FWER} = P(V \geq 1)$
- What does the α-cutoff mean here?
 Testing each hypothesis (gene) at level α
 guarantees:

 $\text{PCER} \leq \alpha$

 - let’s look at why
What are P-values, really?

Suppose T is the test stat., and t is the observed T.

\[Pval = P(T > t \mid H_0) \]

Assume \(H_0 \) is true. Let \(F \) be the cdf of T and \(f \) be pdf:

\[F(t) = P(T \leq t) = \int_{-\infty}^{t} f(t) dt = 1 - Pval \]

What is the distribution of \(Y = F(t) \)? Let \(g \) be pdf of \(Y \):

\[\frac{dy}{dt} = F'(t) = f(t), \quad g(y) = f(t) \frac{dt}{dy} = f(t) \frac{1}{f(t)} = 1 \]

So \(Y = 1 - Pval \) is Uniform[0,1].

Then when \(H_0 \) is true, \(Pval \sim U[0,1] \).
P-values and α cut-off

- Suppose null is true for all m genes - (so none of the genes are differentially expressed)

- Look at histogram of $m=1000$ P-values with $\alpha=0.05$ cut-off

 - about 50 “significant” just by chance
 these can be “expensive” errors

(Here, $V/m \approx 50/1000 = 0.05$.)
How to control this error rate?

Look at controlling the FWER:
Testing each hypothesis (gene) at α/m instead of α guarantees:
FWER $\leq \alpha$

This is called the Bonferroni correction

This is far too conservative for large m
A more reasonable approach

- Consider these corrections sequentially:

 Let P_i be the P-value for testing gene i, with null H_i. Let $P(1) \leq P(2) \leq \ldots \leq P(m)$ be the ordered P-values.

 Let k be the largest i for which $P(i) \leq \frac{i}{m} \alpha$.

 Reject all $H(i)$ for $i = 1, 2, \ldots, k$.

- Then for independent test statistics and for any configuration of false null hypotheses, this procedure guarantees:

 $E[V/R] \leq \alpha$
What does this mean?

- \(V = \# \) of “wrongly-rejected” nulls
- \(R = \) total \# of rejected nulls
- Think of rejected nulls as “discovered” genes of significance
- Then call \(E[V/R] \) the FDR
 - False Discovery Rate
- This is the Benjamini-Hochberg FDR correction – sometimes called the marginal FDR correction
Benjamini-Hochberg adjusted P-values

Let $P_1 \leq P_2 \leq \ldots \leq P_m$ be the ordered P-values.

Let $P_{(i)}^{(adj)} = P_{(i)} \cdot \frac{m}{i}$.

If any $P_{(i)}^{(adj)} > 1$, reset it to 1.

If any $P_{(i)}^{(adj)} > P_{(i+1)}^{(adj)}$, reset it to $P_{(i+1)}^{(adj)}$ (starting at the end of the list, checking backwards).

Then $P_{(1)}^{(adj)} \leq P_{(2)}^{(adj)} \leq \ldots \leq P_{(m)}^{(adj)}$ are the ordered BH - FDR - adjusted P-values.
An extension: the q-value

• p-value for a gene:
 the probability of observing a test stat.
 more extreme when null is true

• q-value for a gene:
 the expected proportion of false positives
 incurred when calling that gene significant

• Compare (with slight abuse of notation):

\[pval = P(T > t \mid H_0 \text{ true}) \quad qval = P(H_0 \text{ true} \mid T > t) \]
Useful visualization technique: the volcano plot

Good for visualizing importance of variability

Loss of information?
Smoothed Color Density Representation

- **Interpretation:**
 - color
 represents
 density around corresponding point

- **How is this better?**
 - visualize overlayed points
Another visualization tool: heatmap

- Expression (matrix) on color scale (here, dark red to dark blue)
- Rows and columns clustered … “dendrogram”
Hierarchical clustering: agnes

- **Agglomerative Nesting** – (hierarchical clustering)

- Start with “singleton” clusters – each vector is its own group
- Find the two “closest” vectors and “merge” them – distance usually Euclidean; form a cluster
- Then recalculate distances: Linkage – distance between clusters
 - Average linkage: average of dissimilarities between clusters
 - Single linkage: dissimilarity between “nearest neighbors”
 - Complete linkage: “farthest neighbors”
Side note: color matters!

www.vischeck.com/vischeck/vischeckImage.php
Gene Profiling / Selection

- “Observe” gene expression in different conditions – healthy vs. diseased, e.g.

- Use simultaneous expression “profiles” of thousands of genes (what are the genes doing across arrays)

- Look at which genes are “important” in “separating” the two conditions; i.e., what determines the conditions’ “signatures”
Machine Learning

- Computational & statistical inference processes: observed data → reusable algorithms for prediction
- Why “machine”?
 want minimal human involvement
- Why “learning”?
 develop ability to predict
- Here, supervised learning:
 use knowledge of condition type
Machine Learning Methods

- Neural Network
- SVM (Support Vector Machine)
- RPART (Recursive PArtitioning and Regression Trees)
- CART (Classification and Regression Trees)
- Ensembling Learning (average of many trees)
 - Boosting
 - Bagging
 - RandomForests
CART: Classification and Regression Trees

- Each individual (array) has data on many predictors (genes) and one response (disease state)

- Think of a tree, with splits based on levels of specific predictors

- Choose predictors and split levels to maximize “purity” in new groups; the best split at each node

- Prediction made by: passing test cases down tree
CART generalized: Random Forests

- Rather than using all predictors and all individuals to make a single tree, make a forest of many \(n_{tree} \) trees, each one based on a random selection of predictors and individuals.

- Each tree is fit using a bootstrap sample of data (draw with replacement) and ‘grown’ until each node is ‘pure’.

- Each node is split using the best among a subset (of size \(m_{try} \)) of predictors randomly chosen at that node (default is sqrt. of # of predictors) (special case using all predictors: bagging).

- Prediction made by aggregating across the forest (majority vote or average).
How to measure “goodness”?

• Each tree fit on a “training” set (bootstrap sample), or the “bag”

• The left-over cases (“out-of-bag”) can be used as a “test” set for that tree (usually 1/3 of original data)

• The “out-of-bag” (OOB) error rate is the: % misclassification
What does RF give us?

- Kind of a “black box”
 - but can look at “variable importance”
- For each tree, look at the OOB data:
 - Permute values of predictor j among all OOB cases
 - Pass OOB data down the tree, save the predictions
 - For case i of OOB and predictor j, get:
 - OOB error rate with variable j permuted – OOB error rate before permutation
- Average across forest to get overall variable importance for each predictor j
Why “variable importance”?

- Recall: identifying conditions’ signatures
- Sort genes by some criterion
- Want smallest set of genes to achieve good diagnostic ability
ALL subset: 3,024 genes (FDR sig. at .05), 30 arrays (15 B, 15 T)
Look at top 3 most “important” genes from Random Forest.
On the subset of 30 arrays:

Over all 128 arrays:
Then what?

- List of candidate genes: needles in a haystack

- Further study:
 - common pathways and functions
 - validation: qRT-PCR, etc.

- Hypothesis generation