STAT 2000, Section 001
Introduction to Statistical Methods
Fall Semester 2002

Dr. Jürgen Symanzik
Utah State University
Department of Mathematics and Statistics
3900 Old Main Hill
Logan, UT 84322-3900

Tel.: (435) 797-0696
FAX: (435) 797-1822

e-mail: symanzik@sumfs.math.usu.edu
Contents

1 Introduction: What is Statistics? 1

2 Looking at Data — Distributions 1
 2.1 Keywords .. 1
 2.2 Displaying Distributions with Graphs 2
 2.3 Describing Distributions with Numbers 8
 2.4 The Normal Distributions 15

3 Looking at Data — Relationships 22
 3.1 Scatterplots .. 22
 3.2 Least-Squares Regression 28
 3.3 Correlation .. 31
 3.4 Residuals (or Errors) 32
 3.5 Relations in Categorical Data 34

4 Producing Data 36
 4.1 First Steps .. 36
 4.2 Design of Experiments 37
 4.3 Sampling Design 40
 4.4 Toward Statistical Inference 41

5 Probability: The Study of Randomness 44
 5.1 Randomness .. 44
 5.2 Probability Models 44
 5.3 Random Variables 47
 5.4 Mean and Variance of a Random Variable 55

6 From Probability to Inference 59
 6.1 Sampling Distributions for Counts and Proportions 59
 6.2 The Sampling Distribution of a Sample Mean 67
7 Introduction to Inference 70
 7.1 Estimating with Confidence 70
 7.2 Tests of Significance 73
 7.3 Use and Abuse of Tests 76

8 Inference for Distributions 78
 8.1 Inference for the Mean of a Population 78

9 Useful Future Statistics Courses 81
1 Introduction: What is Statistics?

Three main topics discussed in this class:

(i) (Simple) Data Analysis:
methods to organize and describe data using graphs, summaries, and mathematical
descriptions, e.g.,

(ii) Data Production:
methods to produce data, e.g., how to select samples and how to design experiments,
e.g.,

(iii) Statistical Inference:
draw conclusions based on existing data and determine how reliable these conclusions
are, e.g.,
2 Looking at Data — Distributions

2.1 Keywords

Individuals:
objects described by the data set, e.g.,

Variable:
characteristic of an individual, e.g.,

Types of Data:
these terms below determine our statistical analysis:

(i) **Qualitative or Categorical data (variable):**
data is non-numerical, e.g.,

(ii) **Quantitative data (variable):**
data is numerical

(a) Discrete:

(b) Continuous:
(iii) (a) Univariate data:
 one response is measured per individual

(b) Multivariate data:
 several responses are measured per individual

(iv) Distribution of a Variable:
 tells us which values a variable takes and how often it takes these values

2.2 Displaying Distributions with Graphs

Histograms:
most common graph of the distribution of a quantitative variable

Example: "Most Widely Held Stocks"

Class (Amount in $) Tally Frequency (Number of Stocks)

Note:

- Vertical axis must start at 0
- No spaces between bars
- Each bar with same width
Guidelines for Making Useful Histograms:

(i) Use equal class intervals (rule of thumb $\approx \sqrt{N}$ classes, where N is the number of observations) and meaningful starting numbers (e.g., multiple of 100s, 50s, 0.5s, etc.)

(ii) Use uniform scales on both axes (i.e., don't change the scale halfway along an axis)

(iii) Show the entire vertical axes beginning at 0.
 A counterexample is:

(iv) Center the bars of heights proportional to frequencies over the mid points of the class intervals, e.g.,

(v) Following these rules makes equal numbers of data points correspond to equal areas on histograms. When any of these rules is violated, visual distortions are produced.

(vi) Check the Web at
 http://www.stat.sc.edu/~west/javahtml/Histogram.html
 and see how different widths of the class intervals can affect the appearance of a histogram. Note that there exists no "best" histogram.

Interpreting Histograms:

- Outliers: ...
- Center and Spread: ...
- Shape: ...

Stemplots (or Stem-and-Leaf-Plots):
Quicker to draw and more detailed information than histograms; however, only useful for small data sets (i.e., around 100 observations or less)
Example: "The Cost of Victories" – Wins

or better:

or best (in this example) after splitting stems:

Time Plots:
Plot of one variable versus time. Note that the time is always on the horizontal axis, increasing from left to right. Scale should be uniform, i.e., even if data is only available for a few year such as 1980, 1990, 1995, and 2000, the spacing between 1980 and 1990 must be twice as wide as the spacing between the other years.

Main components of a time plot are

- Trend: ...
- Seasonal Pattern: ...

Examples:
Bar Charts and Pie Charts: (for Categorical Data)

- **Bar Chart:**

 Example: "Real Quiet the Real Thing?"

Note:

- Vertical axis must start at 0
- Spaces between bars

Other Examples:

- **Pie Chart:**

 Example: "Real Quiet the Real Thing?"

Construction:

Sum up numbers, each slice is a fraction of the total size of the pie, i.e.,

Good design:

Start with the biggest "slice" at "noon" position. Move clockwise, using largest values first.

Avoid 3-dimensional slice charts – for those the area in the background seems to be smaller than the area in the foreground and thus the visual impression is misleading.