Name:

Created: Fri Apr 07 11:56:15 MDT 2006
Directions:Work all problems included. If you need more room use the back of the page to complete the problem. You may a calculator for computing numerical values. However, you may not use calculators for symbolic calculations unless the problem indicates this can be done. For full credit you must show all work including algebraic steps.

Problem 1: Compute the following indefinite integral

$$
\begin{aligned}
& \int_{1}^{2} \frac{e^{\sqrt{x+1}}}{\sqrt{x+1}} d x \\
& u=\sqrt{x+1} \\
& x=1, \quad u=\sqrt{1+1}=\sqrt{2} \\
& x=2, u=\sqrt{2+1}=\sqrt{3} \\
& d u=\frac{1}{2 \sqrt{x+1}} \cdot d x \\
& \Rightarrow 2 d u=\frac{1}{\sqrt{x+1}} \\
& =-\int_{\sqrt{2}}^{\sqrt{3}} e^{u}(2 d u) \\
& =2 \int_{\sqrt{2}}^{\sqrt{3}} e^{u} d u \\
& =\left.2 e^{u}\right|_{u=\sqrt{2}} ^{u=\sqrt{3}} \\
& =2 e^{\sqrt{3}}-2 e^{\sqrt{2}} \\
& =2\left(e^{\sqrt{3}}-e^{\sqrt{2}}\right)
\end{aligned}
$$

Problem 2: Verify that the function is a solution of the differential equation.

$$
\begin{aligned}
& y=10 e^{-3 t} \quad y^{\prime}+3 y=0 \\
& y^{\prime}=10\left(-3 e^{-3 t}\right)=-30 e^{-3 t} \\
& \Rightarrow y^{\prime}+3 y=-30 e^{-3 t}+3\left(10 e^{-3 t}\right) \\
&=-30 e^{-3 t}+30 e^{-3 t} \\
&=0
\end{aligned}
$$

Problem 3: Decide whether the variables in the differential equation can be separated.

$$
\begin{aligned}
x \frac{d y}{d x} & =\frac{x^{2}}{y^{2}} \\
& \Rightarrow y^{2} \frac{d y}{d x}=\frac{x^{2}}{x} \\
& \Rightarrow y^{2} \frac{d y}{d x} \cdot d x=x d x \\
& \Rightarrow y^{2} d y=x d x
\end{aligned}
$$

depends only
on y on y
depends only
in $x$$\Rightarrow$ The equation is separable

Problem 4: Find all critical points of the function

$$
f(x, y)=x^{3}+y^{3}-4 x-9 y+17
$$

Classify the critical point as a relative minimum, relative maximum, or saddle point using the second derivative test.

$$
\left.\begin{array}{l}
\frac{\partial f}{\partial x}=3 x^{2}-4=0 \Rightarrow x^{2}=4 / 3 \Rightarrow x= \pm \sqrt{4 / 3} \\
\frac{\partial f}{\partial y}=3 y^{2}-9=0 \Rightarrow y^{2}=3 \Rightarrow x= \pm \sqrt{3}
\end{array}\right\} \Rightarrow \begin{aligned}
& 4 \text { critcial pts } \\
& (\sqrt{4 / 3}, \sqrt{3}),(\sqrt{1 / 3},-\sqrt{3}) \\
& (-\sqrt{4 / 3}, \sqrt{3}),(-\sqrt{4 / 3},-\sqrt{3})
\end{aligned}
$$

- Now the second derivations

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}} \\
&=6 x \\
& \frac{\partial^{2} f}{\partial y^{2}}=6 y \\
& \frac{\partial^{2} f}{\partial x \partial y}=0=\frac{\partial^{2} f}{\partial y \partial x} \\
& \Rightarrow d=(6 x)(6 y)=36 x y
\end{aligned}
$$

(1) $(\sqrt{3}, \sqrt{3})$

$$
d=36 \sqrt{4 / 3} \sqrt{3}>0
$$

\Rightarrow rel mun. sunni $-5 / \partial x^{2}>0$
(2) $(\sqrt{1 / 3},-\sqrt{3}) \quad d=36 \sqrt{4} / 3(-\sqrt{3})<0$
\Rightarrow saddle pt
(3) $(-\sqrt{3}, \sqrt{3}) \quad d=3(-\sqrt{4 / 3}) \sqrt{3})<0$
\Rightarrow saddle pt.
(4) $(-\sqrt{4} / 3,-\sqrt{3}) \quad d=36(-\sqrt{4} / 3)(-\sqrt{3})>0$
\Rightarrow ala max sure $3 / 2 x^{2}<0$

Problem 5: Sketch the region between the graphs of the functions and compute the area of this
 Find intersection points:

$$
\begin{aligned}
& 9-x^{2}=x^{2}-4 \Rightarrow 2 x^{2}=13 \\
& \Rightarrow x=\sqrt[4]{\frac{0}{2}} \\
& +\sqrt{13 / 2} \\
& \text { Area }=\int\left(\left(9-x^{2}\right)-\left(x^{2}-4\right)\right) d x \\
& \begin{array}{l}
=\int_{-\sqrt{1 / 2}}^{\sqrt{13 / 31 / 2}}\left(13-x^{2}\right) d x \\
=\left.\left(13 x-\frac{1}{3} x^{3}\right)\right|_{-\sqrt{13 / 2}} ^{\sqrt{13 / 2}}=\text { Area }
\end{array}
\end{aligned}
$$

Problem 6: Verify that the general solution satisfies the differential equation. Then find the particular solution that satisfies the initial condition.

General Solution:
Differential Equation: Initial Condition:

$$
\begin{aligned}
& y=(1 / 3) x^{2}+C \\
& 3 y^{\prime}=2 x \\
& y=3 \text { and } x=2
\end{aligned}
$$

$$
\begin{gathered}
y^{\prime}=\frac{d}{d x}\left(1 / 3 x^{2}+c\right)=2 / 3 x+0 \\
3 y^{\prime}=3(2 / 3 x)=2 x
\end{gathered}
$$

when $y=3 \quad+x=2$

$$
\begin{aligned}
& \Rightarrow \quad 3=(1 / 3)(2)^{2}+C \\
& \Rightarrow \quad 3=4 / 3+C \Rightarrow C=3-4 / 3=5 / 3 \\
& y=1 / 3 x^{2}+5 / 3
\end{aligned}
$$

Problem 7: Evaluate g_{x} and g_{y} at the point.

$$
\begin{array}{rlrl}
g(x, y)=x^{2} x^{2}-6 y-4 x+10 & (1,-1) \\
\frac{\partial g}{\partial x}=g_{x} & =4 x^{3}-4 & \text { at } x=1, y=-1 \\
& g_{x}=4(1)^{3}-4=0 \\
\frac{\partial g}{\partial y}=g_{y} & =-6 & \text { at } x=1, y=-1 \\
& =\begin{aligned}
\text { constant } \\
\text { value }
\end{aligned} & g_{y}=-6
\end{array}
$$

Problem 8: Compute the general solution of the following equation via separation of variables.

$$
\frac{d y}{d x}=\frac{x^{2}+3}{y^{2}-1}
$$

Leave the solution in an implicit relationship for x and y.

$$
\begin{aligned}
& \Rightarrow\left(y^{2}-1\right) \frac{d y}{d x}=x^{2}+3 \\
& \Rightarrow\left(y^{2}-1\right) \underbrace{\frac{d y}{d x} d x}=\left(x^{2}+3\right) d x \\
& \Rightarrow\left(y^{2}-1\right) d y=\left(x^{2}+3\right) d x \\
& \Rightarrow \int\left(y^{2}-1\right) d y=\int\left(x^{2}+3\right) d x \\
& \Rightarrow \frac{1}{3} y^{3}-y=\frac{1}{3} x^{3}+3 x+C
\end{aligned}
$$

Created: Fri Apr 07 11:56:15 MDT 2006
Problem 9: Find all critical points of the function

$$
f(x, y)=-x^{2}-9 x y-y^{3}-6 x-8 y
$$

Classify the critical point as a relative minimum, relative maximum, or saddle point using the second derivative test.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=-2 x-9 y-6 \\
& \frac{\partial f}{\partial y}=-9 x-3 y^{2}
\end{aligned}
$$

leave this

one out
for now

Problem 10: Sketch the region between the graphs of the functions and compute the area of this region.

$$
y=\frac{2}{x}, \quad y=x^{3}, \quad y=0, \quad x=0, \quad x=3
$$

> Intersection Pout

$$
\begin{aligned}
& x^{3}=2 / x \\
& \Rightarrow x^{4}=2 \\
& \Rightarrow x=2^{1 / 4}
\end{aligned}
$$

S_{0},

$$
\begin{aligned}
\text { Area } & =\int_{0}^{\sqrt[4]{2}} x^{3} d x+\int_{\sqrt[4]{2}}^{3} 2 x d x \\
& =\left.\frac{1}{4} x^{4}\right|_{0} ^{\sqrt[4]{2}}+\left.2 \ln (x)\right|_{\sqrt[4]{4}} ^{3} \\
& =\frac{1}{4}(2)-0+2 \ln (3)-2 \ln \left(2^{1 / 4}\right)
\end{aligned}
$$

